Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Clin Immunol ; 2023 May 26.
Article in English | MEDLINE | ID: covidwho-20230962

ABSTRACT

PURPOSE: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS: In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS: At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION: A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.

2.
Microbiol Spectr ; 11(3): e0115523, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2320156

ABSTRACT

Few studies have comprehensively compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-induced and hybrid B- and T-cell responses in people with HIV (PWH) to those in comparable controls without HIV. We included 195 PWH and 246 comparable controls from the AGEhIV COVID-19 substudy. A positive nucleocapsid antibody (INgezim IgA/IgM/IgG) or self-reported PCR test defined prior SARS-CoV-2 infection. SARS-CoV-2 anti-spike (anti-S) IgG titers and anti-S IgG production by memory B cells were assessed. Neutralizing antibody titers were determined in a subset of participants. T-cell responses were assessed by gamma interferon (IFN-γ) release and activation-induced marker assay. We estimated mean differences in postvaccination immune responses (ß) between levels of determinants. Anti-S IgG titers and anti-S IgG production by memory B cells were not different between PWH and controls. Prior SARS-CoV-2 infection (ß = 0.77), receiving mRNA vaccine (ß = 0.56), female sex (ß = 0.24), fewer days between last vaccination and sampling (ß = 0.07), and a CD4/CD8 ratio of <1.0 (ß = -0.39) were independently associated with anti-S IgG titers, but HIV status was not. Neutralization titers against the ancestral and Delta and Omicron SARS-CoV-2 variants were not different between PWH and controls. IFN-γ release was higher in PWH. Prior SARS-CoV-2 infection (ß = 2.39), HIV-positive status (ß = 1.61), and fewer days between last vaccination and sampling (ß = 0.23) were independently associated with higher IFN-γ release. The percentages of SARS-CoV-2-reactive CD4+ and CD8+ T cells, however, were not different between PWH and controls. Individuals with well-controlled HIV generally mount robust vaccine-induced as well as hybrid B- and T-cell immunity across SARS-CoV-2 vaccine platforms similar to controls. Determinants of a reduced vaccine response were likewise largely similar in both groups and included a lower CD4/CD8 ratio. IMPORTANCE Some studies have suggested that people with HIV may respond less well to vaccines against SARS-CoV-2. We comprehensively compared B- and T-cell responses to different COVID-19 vaccines in middle-aged persons with well-treated HIV and individuals of the same age without HIV, who were also highly comparable in terms of demographics and lifestyle, including those with prior SARS-CoV-2 infection. Individuals with HIV generally mounted equally robust immunity to the different vaccines. Even stronger immunity was observed in both groups after prior SARS-CoV-2 infection. These findings are reassuring with respect to the efficacy of SARS-Cov-2 vaccines for the sizable and increasing global population of people with HIV with access and a good response to HIV treatment.


Subject(s)
COVID-19 , HIV Infections , Vaccines , Middle Aged , Female , Humans , COVID-19 Vaccines , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G
3.
Int J Infect Dis ; 130: 126-135, 2023 May.
Article in English | MEDLINE | ID: covidwho-2289109

ABSTRACT

OBJECTIVES: Preventive measures against COVID-19 are essential for pregnant women. Pregnant women are particularly vulnerable to emerging infectious pathogens due to alterations in their physiology. We aimed to determine the optimum timing of vaccination to protect pregnant women and their neonates from COVID-19. METHODS: A prospective observational longitudinal cohort study in pregnant women who received COVID-19 vaccination. We collected blood samples to evaluate levels of antispike, receptor binding domain and nucleocapsid antibodies against SARS-CoV-2 before vaccination and 15 days after the first and second vaccination. We determined the neutralizing antibodies from mother-infant dyads in maternal and umbilical cord blood at birth. If available, immunoglobulin A was measured in human milk. RESULTS: We included 178 pregnant women. Median antispike immunoglobulin G levels increased significantly from 1.8 to 5431 binding antibody units/ml and receptor binding domain from 6 to 4466 binding antibody units/ml. Virus neutralization showed similar results between different weeks of gestation at vaccination (P >0.3). CONCLUSION: We advise vaccination in the early second trimester of pregnancy for the optimum balance between the maternal antibody response and placental antibody transfer to the neonate.


Subject(s)
COVID-19 , SARS-CoV-2 , Pregnancy , Infant, Newborn , Infant , Female , Humans , Antibody Formation , COVID-19 Vaccines , Longitudinal Studies , Pregnancy Trimester, Second , COVID-19/prevention & control , Placenta , Antibodies, Viral , Vaccination , Mothers
5.
Front Immunol ; 13: 976382, 2022.
Article in English | MEDLINE | ID: covidwho-2043448

ABSTRACT

Background: As SARS-CoV-2 will likely continue to circulate, low-impact methods become more relevant to monitor antibody-mediated immunity. Saliva sampling could provide a non-invasive method with reduced impact on children. Studies reporting on the differences between systemic and mucosal humoral immunity to SARS-CoV-2 are inconsistent in adults and scarce in children. These differences may be further unraveled by exploring associations to demographic and clinical variables. Methods: To evaluate the use of saliva antibody assays, we performed a cross-sectional cohort study by collecting serum and saliva of 223 children attending medical services in the Netherlands (irrespective of SARS-CoV-2 exposure, symptoms or vaccination) from May to October 2021. With a Luminex and a Wantai assay, we measured prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD) and nucleocapsid-specific IgG and IgA in serum and saliva and explored associations with demographic variables. Findings: The S-specific IgG prevalence was higher in serum 39% (95% CI 32 - 45%) than in saliva 30% (95% CI 24 - 36%) (P ≤ 0.003). Twenty-seven percent (55/205) of children were S-specific IgG positive in serum and saliva, 12% (25/205) were only positive in serum and 3% (6/205) only in saliva. Vaccinated children showed a higher concordance between serum and saliva than infected children. Odds for saliva S-specific IgG positivity were higher in girls compared to boys (aOR 2.63, P = 0.012). Moreover, immunocompromised children showed lower odds for S- and RBD-specific IgG in both serum and saliva compared to healthy children (aOR 0.23 - 0.25, P ≤ 0.050). Conclusions: We showed that saliva-based antibody assays can be useful for identifying SARS-CoV-2 humoral immunity in a non-invasive manner, and that IgG prevalence may be affected by sex and immunocompromisation. Differences between infection and vaccination, between sexes and between immunocompromised and healthy children should be further investigated and considered when choosing systemic or mucosal antibody measurement.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/epidemiology , Child , Cross-Sectional Studies , Female , Humans , Immunoglobulin A , Immunoglobulin G , Male , Prevalence , Prospective Studies
6.
Nat Commun ; 13(1): 4539, 2022 08 04.
Article in English | MEDLINE | ID: covidwho-1972604

ABSTRACT

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Epitopes , Humans , Immunoglobulin Isotypes , Receptors, Antigen, B-Cell , Spike Glycoprotein, Coronavirus
7.
Front Microbiol ; 13: 853410, 2022.
Article in English | MEDLINE | ID: covidwho-1952413

ABSTRACT

Human coronavirus HKU1 (HCoV-HKU1) is one of the four endemic coronaviruses. It has been suggested that there is a difference in incidence, with PCR-confirmed HCoV-NL63 and HCoV-OC43 infections occurring more commonly, whereas HCoV-HKU1 is the least seen. Lower incidence of HCoV-HKU1 infection has also been observed in serological studies. The current study aimed to investigate antibody dynamics during PCR-confirmed HCoV-HKU1 infections using serum collected during infection and 1 month later. We expressed a new HCoV-HKU1 antigen consisting of both the linker and carboxy-terminal domain of the viral nucleocapsid protein and implemented it in ELISA. We also applied a spike-based Luminex assay on serum samples from PCR-confirmed infections by the four endemic HCoVs. At least half of HCoV-HKU1-infected subjects consistently showed no antibody rise via either assay, and some subjects even exhibited substantial antibody decline. Investigation of self-reported symptoms revealed that HCoV-HKU1-infected subjects rated their illness milder than subjects infected by other HCoVs. In conclusion, HCoV-HKU1 infections reported in this study displayed atypical antibody dynamics and milder symptoms when compared to the other endemic HCoVs.

8.
Microbiol Spectr ; 10(4): e0040522, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909606

ABSTRACT

Infants may develop severe viral respiratory tract infections because their immune system is still developing in the first months after birth. Human milk provides passive humoral immunity during the first months of life. During the COVID-19 pandemic, circulation of common respiratory viruses was virtually absent due to the preventative measures resulting in reduced maternal exposure. Therefore, we hypothesized that this might result in lower antibody levels in human milk during the pandemic and, subsequently, decreased protection of infants against viral respiratory tract infections. We assessed antibody levels against respiratory syncytial virus (RSV), Influenza virus, and several seasonal coronaviruses in different periods of the COVID-19 pandemic in serum and human milk using a Luminex assay. IgG levels against RSV, Influenza, HCoV-OC43, HCoV-HKU1, and HCoV-NL63 in human milk were reduced with a factor of 1.7 (P < 0.001), 2.2 (P < 0.01), 2.6 (P < 0.05), 1.4 (P < 0.01), and 2.1 (P < 0.001), respectively, since the introduction of the COVID-19 restrictions. Furthermore, we observed that human milk of mothers that experienced COVID-19 contained increased levels of IgG and IgA binding to other respiratory viruses. Passive immunity via human milk against common respiratory viruses was reduced during the COVID-19 pandemic, which may have consequences for the protection of breastfed infants against respiratory infections. IMPORTANCE Passive immunity derived from antibodies in human milk is important for protecting young infants against invading viruses. During the COVID-19 pandemic, circulation of common respiratory viruses was virtually absent due to preventative measures. In this study, we observed a decrease in human milk antibody levels against common respiratory viruses several months into the COVID-19 pandemic. This waning of antibody levels might partially explain the previously observed surge of hospitalizations of infants, mostly due to RSV, when preventative hygiene measures were lifted. Knowledge of the association between preventative measures, antibody levels in human milk and subsequent passive immunity in infants might help predict infant hospital admissions and thereby enables anticipation to prevent capacity issues. Additionally, it is important in the consideration for strategies for future lockdowns to best prevent possible consequences for vulnerable infants.


Subject(s)
COVID-19 , Respiratory Tract Infections , Viruses , Antibodies, Viral , COVID-19/epidemiology , Communicable Disease Control , Female , Humans , Immunoglobulin G , Infant , Milk, Human , Pandemics , Respiratory Syncytial Viruses , Respiratory Tract Infections/epidemiology
9.
PLoS Med ; 19(5): e1003991, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846918

ABSTRACT

BACKGROUND: Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS: In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS: Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Netherlands/epidemiology , Prospective Studies , SARS-CoV-2/genetics
10.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 06.
Article in English | MEDLINE | ID: covidwho-1783444

ABSTRACT

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , 2019-nCoV Vaccine mRNA-1273/blood , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Sci Rep ; 12(1): 3884, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740465

ABSTRACT

Current SARS-CoV-2 vaccines are effective, but long-term protection is threatened by the emergence of virus variants. We generated a virosome vaccine containing the Beta spike protein and compared its immunogenicity in mice to a virosome vaccine containing the original Wuhan spike. Two administrations of the virosomes induced potent SARS-CoV-2 neutralizing antibodies in both vaccine groups. The level of autologous neutralization in Beta-vaccinated mice was similar to the level of autologous neutralization in Wuhan-vaccinated mice. However, heterologous neutralization to the Wuhan strain in Beta-vaccinated mice was 4.7-fold lower than autologous neutralization, whereas heterologous neutralization to the Beta strain in Wuhan-vaccinated mice was reduced by only 1.9-fold compared to autologous neutralization levels. In addition, neutralizing activity against the D614G, Alpha and Delta variants was also significantly lower after Beta spike vaccination than after Wuhan spike vaccination. Our results show that Beta spike vaccination induces inferior neutralization breadth. These results are informative for programs aimed to develop broadly active SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Breath Tests , COVID-19 Vaccines/immunology , Female , Mice , Mice, Inbred BALB C , Neutralization Tests , Vaccines, Virosome/immunology , Vaccines, Virosome/therapeutic use
12.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649494

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Liposomes , Macaca fascicularis , Male , Pandemics/prevention & control , Th1 Cells/immunology , Treatment Outcome , Vaccines, Virus-Like Particle/immunology , Vero Cells
13.
NPJ Vaccines ; 6(1): 146, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1550286

ABSTRACT

The emergence of SARS-CoV-2 variants that are more resistant to antibody-mediated neutralization pose a new hurdle in combating the COVID-19 pandemic. Although vaccines based on the original Wuhan sequence have been shown to be effective at preventing COVID-19, their efficacy is likely to be decreased against more neutralization-resistant variants-of-concern (VOC), in particular, the Beta variant originating in South Africa. We assessed, in mice, rabbits, and non-human primates, whether a third vaccination with experimental Wuhan-based Spike vaccines could alleviate this problem. Our data show that a third immunization improves neutralizing antibody titers against the variants-of-concern, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2). After three vaccinations, the level of neutralization against Beta was similar to the level of neutralization against the original strain after two vaccinations, suggesting that simply providing a third immunization could nullify the reduced activity of current vaccines against VOC.

14.
Elife ; 102021 11 23.
Article in English | MEDLINE | ID: covidwho-1529013

ABSTRACT

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11- to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2- to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 vaccination in macaques and humans, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Healthy Volunteers , Humans , Immunoglobulin G/immunology , Macaca , Middle East Respiratory Syndrome Coronavirus/immunology , Principal Component Analysis , Protein Domains/immunology , Serum/immunology , Serum/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Tetanus Toxoid/immunology , mRNA Vaccines/immunology
15.
Microbiol Spectr ; 9(2): e0073121, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1410324

ABSTRACT

COVID-19 patients produce circulating and mucosal antibodies. In adults, specific saliva antibodies have been detected. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We therefore assessed SARS-CoV-2-specific antibody prevalence in serum and saliva in children in the Netherlands. We assessed SARS-CoV-2 antibody prevalence in serum and saliva of 517 children attending medical services in the Netherlands (irrespective of COVID-19 exposure) from April to October 2020. The prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N)-specific IgG and IgA were evaluated with an exploratory Luminex assay in serum and saliva and with the Wantai SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay in serum. Using the Wantai assay, the RBD-specific antibody prevalence in serum was 3.3% (95% confidence interval [CI]. 1.9 to 5.3%). With the Luminex assay, we detected heterogeneity between antibodies for S, RBD, and N antigens, as IgG and IgA prevalence ranged between 3.6 and 4.6% in serum and between 0 and 4.4% in saliva. The Luminex assay also revealed differences between serum and saliva, with SARS-CoV-2-specific IgG present in saliva but not in serum for 1.5 to 2.7% of all children. Using multiple antigen assays, the IgG prevalence for at least two out of three antigens (S, RBD, or N) in serum or saliva can be calculated as 3.8% (95% CI, 2.3 to 5.6%). Our study displays the heterogeneity of the SARS-CoV-2 antibody response in children and emphasizes the additional value of saliva antibody detection and the combined use of different antigens. IMPORTANCE Comprehending humoral immunity to SARS-CoV-2, including in children, is crucial for future public health and vaccine strategies. Others have suggested that mucosal antibody measurement could be an important and more convenient tool to evaluate humoral immunity compared to circulating antibodies. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We show the heterogeneity of SARS-CoV-2 antibodies, in terms of both antigen specificity and differences between circulating and mucosal antibodies, emphasizing the additional value of saliva antibody detection next to detection of antibodies in serum.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , COVID-19/diagnosis , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Phosphoproteins/immunology , Prevalence , Sensitivity and Specificity , Seroepidemiologic Studies
16.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-1046538

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Macaca fascicularis , Spike Glycoprotein, Coronavirus/chemistry , Animals , Antibodies, Neutralizing , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Mice , Mice, Inbred BALB C , Models, Animal , Nanoparticles/administration & dosage , Rabbits , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/blood , T-Lymphocytes/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL